The Imaging of Apoptosis with the Radiolabeled annexin V: Optimal Timing for Clinical Feasibility

Author:

Belhocine Tarik1,Steinmetz Neil2,Li Chun3,Green Allan2,Blankenberg Francis G4

Affiliation:

1. Department of Nuclear Medicine Jules Bordet Cancer Institute 1000 Brussels, Belgium

2. Theseus Imaging Corporation North American Scientific Boston, MA, USA

3. Department of Experimental Diagnostic Imaging MD Anderson Cancer Center Houston, TX, USA

4. Department of Pediatric Radiology Stanford University School of Medicine Palo Alto, CA, USA

Abstract

In recent years, the imaging of drug-induced apoptosis has become one of the centers of interest in experimental and clinical research. In particular, the accurate monitoring of chemosensitivity as well as the early prediction of chemoresistance in response to various pro-apoptotic interventions are critical requirements for the best management of oncology patients. The use of technetium [99m Tc]-labeled annexin V on animal and human models of cancers provides a proof of principle for the feasibility of a non-invasive, in vivo detection of an apoptotic signal and then for the early assessment of tumor response in the course of chemotherapy. Although promising, however, the initial clinical data point out on the technical limitations that are still to be resolved in terms of tumor-to-background ratio and optimal timing for the imaging of apoptosis. In the present review article, we report the results of animal studies aimed to the evaluation of apoptotic peaks following chemotherapy. In the light of these basic research works, we analyze the profiles of radiolabeled annexin V uptake over time as observed in clinical trials. We then discuss possible new imaging strategies designed to optimize the visualization of apoptotic changes within tumor tissues using the [99m Tc]-labeled annexin V. We also suggest longer lived forms of radiolabeled annexin V designed to better understand the temporal patterns of apoptotic tumor response, which in turn, may help to capture the best time-window for the imaging of cell death.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3