Dexamethasone Normalizes Brain Tumor Hemodynamics as Indicated by Dynamic Susceptibility Contrast MRI Perfusion Parameters

Author:

Quarles Christopher C.1,Krouwer Hendrikus G. J.23,Rand Scott D.4,Schmainda Kathleen M.14

Affiliation:

1. Departments of: Biophysics, Medical College of Wisconsin 8701 Watertown Plank Road Milwaukee, WI 53226-0509, USA

2. Neurology, Medical College of Wisconsin 8701 Watertown Plank Road Milwaukee, WI 53226-0509, USA

3. Neurosurgery, Medical College of Wisconsin 8701 Watertown Plank Road Milwaukee, WI 53226-0509, USA

4. Radiology, Medical College of Wisconsin 8701 Watertown Plank Road Milwaukee, WI 53226-0509, USA

Abstract

The purpose of this study is to demonstrate the utility of dynamic susceptibility contrast (DSC) MRI-derived perfusion parameters to characterize the hemodynamic effects of dexamethasone in a 9L gliosarcoma tumor model. Twenty-four rats underwent intracerebral inoculation with 9L tumor cells. Fifteen were treated with a total of 3mg/kg of dexamethasone on days 10–14 post-inoculation, while the remaining 9 rats served as controls. Fourteen days post-inoculation, MRI images, sensitive to total and micro-vascular cerebral blood flow (CBF), mean transit time (MTT), and intravoxel transit time distributions (TTD)s were obtained using a simultaneous gradient-echo(GE)/spin-echo(SE) DSC-MRI method. Dexamethasone-treated animals had a microvascular (SE) tumor CBF that was 45.9% higher ( p = 0.0008) and a MTT that was 47.8% lower ( p = 0.0005) than untreated animals. With treatment, there was a non-significant 91.3% increase in total (GE) vascular CBF ( p = 0.35), and a significant decrease in MTT (49.1%, p = 0.02). The total vascular and microvascular TTDs from the treated tumors were similar to normal brain, unlike the TTDs in the untreated tumors. These findings demonstrate that DSC-MRI perfusion methods can be used to non-invasively detect the morphological and functional changes in tumor vasculature that occur in response to dexamethasone treatment.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3