Reproducibility of a Noninvasive System for Eye Positioning and Monitoring in Stereotactic Radiotherapy of Ocular Melanoma

Author:

Iskanderani Omar12,Béliveau-Nadeau Dominique1,Doucet Robert1,Coulombe Geneviève1,Pascale Deborah1,Roberge David1

Affiliation:

1. Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, Québec, Canada

2. Department of Radiation Oncology, King Abdulaziz University Hospital, Jeddah, Saudi Arabia

Abstract

Purpose: Our preferred treatment for juxtapapillary choroidal melanoma is stereotactic radiotherapy. We aim to describe our immobilization system and quantify its reproducibility. Materials and Methods: Patients were identified in our radiosurgery database. Patients were imaged at computed tomography simulator with an in-house system which allows visual monitoring of the eye as the patient fixates a small target. All patients were reimaged at least once prior to and/or during radiotherapy. The patients were treated on the CyberKnife system, 60 Gy in 10 daily fractions, using skull tracking in conjunction with our visual monitoring system. In order to quantify the reproducibility of the eye immobilization system, computed tomography scans were coregistered using rigid 6-dimensional skull registration. Using the coregistered scans, x, y, and z displacements of the lens/optic nerve insertion were measured. From these displacements, 3-dimensional vectors were calculated. Results: Thirty-four patients were treated from October 2010 to September 2015. Thirty-nine coregistrations were performed using 73 scans (2-3 scans per patient). The mean displacements of lens and optic nerve insertion were 0.1 and 0.0 mm. The median 3-dimensional displacements (absolute value) of lens and nerve insertion were 0.8 and 0.7 mm (standard deviation: 0.5 and 0.6 mm). Ninety-eight percent of 3-dimensional displacements were below 2 mm (maximum 2.4 mm). The calculated planning target volume (PTV) margins were 0.8, 1.4, and 1.5 mm in the anterior–posterior, craniocaudal, and right–left axes, respectively. Following this analysis, no further changes have been applied to our planning margin of 2 to 2.5 mm as it is also meant to account for uncertainties in magnetic resonance imaging to computed tomography registration, skull tracking, and also contouring variability. Conclusion: We have found our stereotactic eye immobilization system to be highly reproducible (<1 mm) and free of systematic error.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3