Design, development, and flight testing of a tube-launched coaxial-rotor based micro air vehicle

Author:

Denton Hunter1ORCID,Benedict Moble1,Kang Hao2

Affiliation:

1. Texas A&M University, USA;

2. U.S. Army CCDC: Army Research Lab, USA

Abstract

This paper describes the development and flight testing of a compact, re-configurable, hover-capable rotary-wing micro air vehicle that could be tube launched for increasing mission range. The vehicle design features a coaxial rotor with foldable blades, thrust-vectoring mechanism for pitch/roll control and differential rpm for yaw control. The vehicle was stabilized using a cascaded feedback controller implemented on a 1.7-gram custom-designed autopilot. Wind tunnel tests conducted using a single-degree-of-freedom stand demonstrated gust-tolerance up to 5  m/s, which was verified via flight testing. Finally, the 366-gram vehicle was launched vertically from a pneumatic cannon followed by a stable projectile phase, passive rotor unfolding, and transition to a stable hover from arbitrarily large attitude angles demonstrating the robustness of the controller.

Funder

Army Research Laboratory

Publisher

SAGE Publications

Subject

Aerospace Engineering

Reference28 articles.

1. Challenges Facing Future Micro-Air-Vehicle Development

2. Opportunities and challenges with autonomous micro aerial vehicles

3. Coleman D, Halder A, Saemi F, et al. Development of aria, a compact, ultra-quiet personal electric helicopter. In Proceedings of the 77th Annual National Forum of the Vertical Flight Society,. Virtual: The Vertical Flight Society.

4. Commercial Aircraft Propulsion and Energy Systems Research

5. Vehicle Design and Optimization Model for Urban Air Mobility

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a tube-launched tail-sitter unmanned aerial vehicle;International Journal of Micro Air Vehicles;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3