Micro air vehicle local pose estimation with a two-dimensional laser scanner: A case study for electric tower inspection

Author:

Viña Carlos1,Morin Pascal1

Affiliation:

1. Institut des Systèmes Intelligents et de Robotique (ISIR), Sorbonne Universités, Paris, France

Abstract

Automation of inspection tasks is crucial for the development of the power industry, where micro air vehicles have shown a great potential. Self-localization in this context remains a key issue and is the main subject of this work. This article presents a methodology to obtain complete three-dimensional local pose estimates in electric tower inspection tasks with micro air vehicles, using an on-board sensor set-up consisting of a two-dimensional light detection and ranging, a barometer sensor and an inertial measurement unit. First, we present a method to track the tower’s cross-sections in the laser scans and give insights on how this can be used to model electric towers. Then, we show how the popular iterative closest point algorithm, that is typically limited to indoor navigation, can be adapted to this scenario and propose two different implementations to retrieve pose information. This is complemented with attitude estimates from the inertial measurement unit measurements, based on a gain-scheduled non-linear observer formulation. An altitude observer to compensate for barometer drift is also presented. Finally, we address velocity estimation with views to feedback position control. Validations based on simulations and experimental data are presented.

Publisher

SAGE Publications

Subject

Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on an Optimized Moving Edge Computing Technology for Power Patrol Inspection;Lecture Notes in Electrical Engineering;2024

2. Automatic Location Algorithm for 3D Space Inspection Points in Substation Based on Deep Learning;2023 International Conference on Internet of Things, Robotics and Distributed Computing (ICIRDC);2023-12-29

3. 一种惯性测量单元与相机固联安装下的对地定位方法;Chinese Journal of Lasers;2023

4. 基于虚拟相机的位姿估计研究进展;Laser & Optoelectronics Progress;2022

5. Research on Building Measurement Accuracy Verification Based on Terrestrial 3D Laser Scanner;IOP Conference Series: Earth and Environmental Science;2021-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3