Affiliation:
1. Institut des Systèmes Intelligents et de Robotique (ISIR), Sorbonne Universités, Paris, France
Abstract
Automation of inspection tasks is crucial for the development of the power industry, where micro air vehicles have shown a great potential. Self-localization in this context remains a key issue and is the main subject of this work. This article presents a methodology to obtain complete three-dimensional local pose estimates in electric tower inspection tasks with micro air vehicles, using an on-board sensor set-up consisting of a two-dimensional light detection and ranging, a barometer sensor and an inertial measurement unit. First, we present a method to track the tower’s cross-sections in the laser scans and give insights on how this can be used to model electric towers. Then, we show how the popular iterative closest point algorithm, that is typically limited to indoor navigation, can be adapted to this scenario and propose two different implementations to retrieve pose information. This is complemented with attitude estimates from the inertial measurement unit measurements, based on a gain-scheduled non-linear observer formulation. An altitude observer to compensate for barometer drift is also presented. Finally, we address velocity estimation with views to feedback position control. Validations based on simulations and experimental data are presented.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献