A method for evaluating the wind disturbance rejection capability of a hybrid UAV in the quadrotor mode

Author:

Zhang Hang1ORCID,Song Bifeng2,Wang Haifeng3,Xuan Jianlin3

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an, China

2. Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China

3. Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, China

Abstract

The wind disturbance rejection capability of a quadrotor fixed-wing hybrid unmanned aerial vehicle (QFHUAV) in the quadrotor mode is an important factor restricting its large-scale applications. In this paper, based on static equilibrium analysis of the quadrotor mode of a QFHUAV with a wind disturbance, a method for analyzing and evaluating the wind disturbance rejection capability of the QFHUAV in the quadrotor mode is presented. The six degrees-of-freedom (6-DOF) static equilibrium equations of the QFHUAV are established in headwind and crosswind situations. The maximum wind velocity that satisfies the equilibrium equations under the constraints of the maximum thrust and torque of the quadrotor propulsion system is used to determine the wind disturbance rejection capability of the QFHUAV in the quadrotor mode. A QFHUAV with a twin-boom is used as an example to analyze and evaluate its wind disturbance rejection capability in the quadrotor mode. The configuration parameters, quadrotor propulsion system parameters, and aerodynamic parameters affecting the wind disturbance rejection capability of the QFHUAV in the quadrotor mode are presented, discussed, and explained. The yawing moment from the wind disturbance is the main factor threatening the safe flight of the QFHUAV in the quadrotor mode. The rotor disk angle, the maximum thrust of the quadrotor propulsion system, and the moment arms of the components of the quadrotor propulsion system thrust are the main factors affecting the wind disturbance rejection capability of the QFHUAV in the quadrotor mode. Increasing these parameter values is an effective approach to improve the wind disturbance rejection capability of the QFHUAV in the quadrotor mode. From the perspective of wind disturbance rejection capability, tailless and X-type layouts are better choices for QFHUAVs. The correctness of results obtained by the proposed method is verified by two flight test schemes.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Aerospace Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wing analysis structure of fixed-wing VTOL UAV SA-1;AIP Conference Proceedings;2024

2. Design and Joint Control of a Conjoined Biplane and Quadrotor;Unmanned Systems;2023-12-14

3. A Tailsitter UAV Based on Bioinspired, Tendon-Driven, Shape-Morphing Wings with Aerofoil-Shaped Artificial Feathers;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

4. Exploring Batteryless UAVs by Mimicking Bird Flight;Proceedings of the Ninth Workshop on Micro Aerial Vehicle Networks, Systems, and Applications;2023-06-18

5. Flight performance characteristics of a modified Quadcopter with and without a wing based on flight test;AIAA SCITECH 2023 Forum;2023-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3