Visualization of vortical flows around a rapidly pitching wing and propeller

Author:

Su Erlong12,Randall Ryan1,Wilson Lee1,Shkarayev Sergey1

Affiliation:

1. Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, USA

2. Science and Technology on Aerospace Flight Dynamics Laboratory, Northwestern Polytechnical University, Xi’an, China

Abstract

This study was conducted to visually investigate flows related to fixed-wing vertical-takeoff-and-landing micro air vehicles, using the smoke-wire technique. In particular, the study examines transition between forward flight and near-hover. The experimental model consists of a rigid Zimmerman wing and a propulsion system with contra-rotating propellers arranged in a tractor configuration. The model was pitched about the wing’s aerodynamic center at approximately constant rates using a five-axis robotic arm. Constant-rate pitching angles spanned 20° to 70°. No-pitching and four pitching-rates were used, along with three propulsive settings. Several observations were made during no-pitching tests. Turbulent wakes behind blades and laminar flow between them produces pulsations in the boundary layer. These pulsations alter the boundary layer from a laminar to turbulent state and back. An increase in lift and drag in the presence of a slipstream is a result of competing effects of the propulsive slipstream: (a) suppression of flow separation and increased velocity over the wing and (b) decrease of the effective angle of attack. Higher nose-up pitching-rates generally lead to greater trailing-edge vortex-shedding frequency. Nose-up pitching without a slipstream can lead to the development of a traditional dynamic-stall leading-edge vortex, delaying stall and increasing wing lift. During nose-up pitching, a slipstream can drive periodically shed leading-edge vortices into a larger vortical-structure that circulates over the upper-surface of a wing in a fashion similar to that of a traditional dynamic-stall leading-edge vortex. At lower nose-up pitching-rates, leading-edge vortices form at lower angles of attacks. As a slipstream strengthens, a few things occur: separation wakes diminish, separation occurs at a higher angle of attacks, and downward flow-deflection increases. Similar effects are observed for nose-up pitching, while nose-down pitching produces the opposite effects.

Publisher

SAGE Publications

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3