Affiliation:
1. Faculty of Engineering Technology, KU Leuven, Bruges, Belgium
2. Department of Mechanical Engineering and member of Flanders Make, KU Leuven, Leuven, Belgium
Abstract
Multicopters are the most popular rotary type of unmanned aerial vehicles. They are a type of helicopter with three or more, usually fixed-pitch, propellers that lift and control the platform by individually changing their rotational velocities. The main advantages of a multicopter are its compactness, robustness, and low cost to build and repair. However, currently no published research determines objectively, quantitatively, and experimentally, the maneuverability and agility of multicopters. Numerous maneuverability and agility metrics, together with detailed test procedures and minimum requirements, exist for manned aircraft. Nevertheless, some of these are not directly applicable to small-size unmanned aircraft. A new test procedure, derived from manned aircraft industry practices and research, based on a simple open-loop step input maneuver, was developed. It experimentally determines nine maneuverability and agility metrics using only onboard flight controller logs. The test procedure is validated using two different multicopters.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献