Modeling the unstable DelftaCopter vertical take-off and landing tailsitter unmanned air vehicle in hover and forward flight from flight test data

Author:

De Wagter Christophe1ORCID,Meulenbeld Joost1

Affiliation:

1. Micro Air Vehicle Lab, Delft University of Technology, the Netherlands

Abstract

The DelftaCopter is a tilt-body tailsitter unmanned air vehicle which combines a large swashplate controlled helicopter rotor with a biplane delta-wing. Previous research has shown that the large moment of inertia of the wing and fuselage significantly interacts with the dynamics of the rotor. While this rigid rotor cylinder dynamics model has allowed initial flight testing, part of the dynamics remains unexplained. In particular, higher frequency dynamics and the forward flight dynamics were not modeled. In this work, the cylinder dynamics model is compared with the tip-path plane model, which includes the steady-state flapping dynamics of the blades. The model is then extended to include the wing and elevon dynamics during forward flight. Flight test data consisting of excitations with a large frequency content are used to identify the model parameters using grey-box modeling. Since the DelftaCopter is unstable, flight tests can only be performed while at least a rate feedback controller is active. To reduce the influence of this active controller on the identification of the dynamics, one axis is identified at a time while white noise is introduced on all other axes. The tip-path plane model is shown to be much more accurate in reproducing the high-frequency attitude dynamics of the DelftaCopter. The significant rotor–wing interaction is shown to differ greatly from what is seen in traditional helicopter models. Finally, an Linear-Quadratic Regulator (LQR) controller based on the tip-path plane model is derived and tested to validate its applicability. Modeling the attitude dynamics of the unstable DelftaCopter from flight test data has been shown to be possible even in the presence of the unavoidable baseline controller.

Publisher

SAGE Publications

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3