Bacterial endotoxin (lipopolysaccharide) stimulates the rate of iron oxidation

Author:

Roth Robert I.1,Panter Scott S.2,Zegna Angelo I.2,Levin Jack3

Affiliation:

1. Department of Pathology, University of California School of Medicine and the Veterans Affairs Medical Center, San Francisco, California, USA

2. Department of Neurosurgery, University of California School of Medicine and the Veterans Affairs Medical Center, San Francisco, California, USA

3. Department of Laboratory Medicine, University of California School of Medicine and the Veterans Affairs Medical Center, San Francisco, California, USA

Abstract

Bacterial endotoxin (lipopolysaccharide) has affinity for a number of cations, including iron. Previous investigations have demonstrated that lipopolysaccharide can affect the oxidation rate of iron; heme-bound ferrous iron in hemoglobin is oxidized to ferric iron when hemoglobin binds lipopolysaccharide. In the present study, we directly examined the interaction between lipopolysaccharide and iron. Lipopolysaccharide caused a concentration-dependent increase in the rate of iron oxidation, with up to a 23-fold increase in oxidation in the presence of 200 µg/ml Escherichia coli lipopolysaccharide. This effect was seen both with several carbohydrate-rich smooth lipopolysaccharides and also with carbohydrate-poor rough lipopolysaccharide. Extensively deacylated rough lipopolysaccharide had no effect, suggesting a role of the fatty acid components of lipopolysaccharide in this process. Purified lipid A produced inconsistent results: some preparations stimulated iron oxidation and others did not. A series of sugars, starches and a preparation of purified O-chain polysaccharide (the carbohydrate portion of the lipopolysaccharide macromolecule) had no effect on the rate of iron oxidation, whereas phospholipid-enriched brain tissue extracts (similar to the lipid A component of lipopolysaccharide) stimulated oxidation. We conclude that the lipid moiety of bacterial lipopolysaccharide is responsible for the stimulation of iron oxidation. This process may contribute to the ability of lipopolysaccharide to cause oxidation of heme-bound iron in hemoglobin.

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3