Role of macrophage-derived nitric oxide in endotoxin lethality in mice

Author:

Parmely M.J.1,Hao S.-Y.1,Morrison D.C.1,Pace J.L.1

Affiliation:

1. Department of Microbiology, Molecular Genetics and Immunology, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA

Abstract

Endotoxic lipopolysaccharides (LPS) mediate lethality in mice by a complex inflammatory process involving the production of multiple mediators, including tumor necrosis factor-α (TNF-α) and nitric oxide (NO). The present study had two objectives: (i) to determine the extent to which TNF-α contributes to the induction of NO production by mouse macrophages activated with LPS in vitro; and (ii) to assess the contribution of macrophage-derived NO to the pathogenesis of endotoxin shock in mice. The studies reported here show that the synthetic adenyl carbocyclic nucleoside 9-[(1S,3R)- cis-cyclopentan-3-ol]adenine (cPA) inhibited TNF-α, but not NO, production by thioglycollate-elicited peritoneal macrophages that were activated with either LPS alone, LPS + interferon-γ (IFN-γ) or IFN-γ + TNF-α. The expression of cytoplasmic TNF-α in LPS + IFN-γ-activated cells was similarly inhibited by cPA, whereas the appearance of inducible NO synthase was unaffected by the compound. Of significance, pretreatment of mice with a single injection of cPA protected the animals against subsequent LPS challenge in two models of endotoxin lethality. These results suggest that macrophage-derived NO, induced by LPS, may not be an essential mediator of the lethal effects of endotoxin. Further, the results of these studies suggest that TNF-α-induced NO production by tissue macrophages also may not be an essential contributing factor in the pathogenesis of lethality induced by endotoxin in mice.

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3