Investigation into the interaction of recombinant human serum albumin with Re-lipopolysaccharide and lipid A

Author:

Jürgens Gudrun1,Müller Mareike1,Garidel Patrick2,Koch Michel H.J.3,Nakakubo Hiroshi4,Blume Alfred2,Brandenburg Klaus5

Affiliation:

1. Forschungszentrum Borstel, Biophysik, Borstel, Germany

2. Martin-Luther Universität, Institut für Physikalische Chemie, Halle, Germany

3. European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany

4. Welfide Corporation, Osaka, Japan

5. Forschungszentrum Borstel, Biophysik, Borstel, Germany,

Abstract

The interaction of bacterial endotoxins, deep rough mutant lipopolysaccharide LPS Re and the `endotoxic principle' lipid A, with recombinant human serum albumin (rHSA) was investigated with a variety of physical techniques and biological assays. With Fourier-transform infrared spectroscopy and differential scanning calorimetry, the influence of albumin on the acyl chain melting behavior of the endotoxins was measured. Also, the effect on the functional groups of the endotoxins, in particular with respect to their orientation, was studied, including competition experiments with polymyxin B. Furthermore, the influence of endotoxin binding to rHSA on the protein's secondary structure was investigated. The results indicate a non-electrostatic binding with no change of the backbone orientation of LPS and only a slight change of the secondary structure of rHSA. Correspondingly, the amount of charge neutralization of the endotoxins due to rHSA measured by the electrophoretic mobility exhibited only a slight reduction of the surface potential. From these measurements and isothermal titration calorimetry, the lipid:protein binding stoichiometry was estimated to [LPS]:[rHSA], 10:1 molar. The determination of the aggregate structure of the endotoxins by X-ray small-angle scattering exhibited a complex change of a cubic into a non-lamellar structure. No influence of rHSA on endotoxin intercalation into phospholipid liposomes induced by lipopolysaccharide-binding protein could be detected by fluorescence resonance energy transfer. Finally, the LPS-induced cytokine production of human mononuclear cells was only slightly increased at high molar rHSA excess, while the coagulation of amebocyte lysate in the Limulus test yielded a complex change due to rHSA binding of LPS.

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

Reference31 articles.

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3