Enzymology of lipid A palmitoylation in bacterial outer membranes

Author:

Bishop Russell E.1,Lo Eileen I.2,Adil Khan M.3,El Zoeiby Ahmed2,Jia Wenyi3

Affiliation:

1. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, , Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada

2. Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada

3. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada

Abstract

The enzymology of palmitate addition to lipid A can be traced to the early discovery of monosaccharide lipid A precursors, but the functional importance of lipid A palmitoylation in bacterial resistance to the host immune response has emerged only recently. Lipid A palmitoylationin enterobacteriais determined by a PhoP/PhoQ-activated gene pagP, which encodes an unusual outer membrane enzyme of lipid A biosynthesis. PagP structure and dynamics have now been elucidated by both NMR spectroscopy and X-ray crystallography. PagP is an 8-stranded antiparallel β-barrel preceded by an N-terminal amphipathic α-helix. The PagP barrel axis is uniquely tilted by 30° with respect to the membrane normal. An interior hydrophobic pocket in the upper half of the molecule functions as a hydrocarbon ruler, which allows the enzyme to distinguish palmitate from other acyl chains found in phospholipids. Internalization of a phospholipid palmitoyl group within the barrel appears to occur by lateral diffusion from the outer leaflet through non-hydrogen bonded regions between β-strands. The MsbA-dependent trafficking of lipids from the inner membrane to the outer membrane outer leaflet is necessary for lipid A palmitoylation in vivo. Efforts to determine the PagP catalytic mechanism may lead to the development of inhibitors for the treatment of infections.

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3