The dual role of LBP and CD14 in response to Gram-negative bacteria or Gram-negative compounds

Author:

Heumann Didier1,Lauener Roger2,Ryffel Bernard3

Affiliation:

1. Institut Transgenose, CNRS Orléans, France

2. Division of Immunology, Kinderspital, Zürich, Switzerland

3. Institut Transgenose, CNRS Orléans, France, @bluewin.ch

Abstract

Innate immunity initiates protection of the host organism against invasion of micro-organisms by specific recognition mechanisms. This article reviews the dual role of LBP/CD14 in innate immunity, focusing mostly on experiments performed in mice by the authors. LPS induces uncontrolled pro-inflammatory response that kills the host and is LBP- and CD14-dependent, as neutralization of LBP and CD14 prevents lethal shock. However, surprisingly, the synthetic Pam3CysSerLys4 bacterial lipoprotein from Escherichia coli (BLP), which is well tolerated in mice, kills the mice upon LBP or CD14 blockade. Furthermore, after blockade of LBP and CD14, the mice succumb to a challenge with virulent Klebsiella pneumoniae or Salmonella typhimurium. Therefore, host responses to Gram-negative bacteria are not identical to that of LPS or BLP. When the host is in the presence of virulent Gram-negative bacteria, the invading pathogens must be held in check by the innate immune system until a specific immune response is mounted. Under these conditions, LBP, CD14, and likely Toll-like receptors (TLRs) are a prerequisite to trigger a pro-inflammatory response of macrophages, which is crucial for keeping an infection under control. These studies indicate that we are very far from understanding how the innate system works and more work needs to be done concerning LBP, CD14 or TLRs. Therefore, caution should be the rule about the use of therapeutic approaches to block the pro-inflammatory response in Gram-negative infections.

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3