Long-term climate, vegetation and fire regime change in a managed municipal water supply area, British Columbia, Canada

Author:

Brown KJ12ORCID,Hebda NJR12,Schoups G3,Conder N1,Smith KAP1,Trofymow JA14

Affiliation:

1. Canadian Forest Service, Natural Resources Canada, Canada

2. Department of Earth, Environmental and Geographic Sciences, The University of British Columbia, Canada

3. Department of Water Management, Delft University of Technology, The Netherlands

4. Department of Biology, University of Victoria, Canada

Abstract

Post-glacial climate, vegetation and fire history were reconstructed from a sediment record from Begbie Lake, British Columbia, Canada, located in a municipal water supply area servicing > 350,000 people. Watershed managers have identified wildfire as a threat to water supply and seek to understand how vegetation and fire have varied through time with climate. In the cold late-glacial, open Pinus woodlands, periodically disturbed by fire, transitioned to mixed conifer forests subject to high-severity fire. The early Holocene is of interest to watershed managers because climate was warmer and drier than present. During this interval, low streamflow, abundant fire-adapted taxa, elevated background charcoal and regional increases in biomass burning indicate that fire seasons were longer and that fire was an important disturbance mechanism. Climate moistened in the mid Holocene, facilitating canopy closure and decreased fire disturbance. However, surface fires prevailed in Quercus ecosystems, which were expanding locally. Charcoal increased between 6180–2500 cal yr BP as climate further cooled and moistened, likely reflecting human activity and/or increased climate variability. Modern conditions arose within the last few millennia, impacted most recently by European settlement. In combination with paleoclimate modelling, modern management practices and forecast simulations, the Begbie Lake record informs about ecosystem changes within the watershed, yielding insights for management.

Funder

Capital Regional District and Natural Resources Canada

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3