Mid-Holocene drylands: A multi-model analysis using Paleoclimate Modelling Intercomparison Project Phase III (PMIP3) simulations

Author:

Liu Shanshan12,Jiang Dabang1234ORCID,Lang Xianmei134

Affiliation:

1. Institute of Atmospheric Physics, Chinese Academy of Sciences, China

2. University of Chinese Academy of Sciences, China

3. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, China

4. CAS Center for Excellence in Tibetan Plateau Earth Sciences, China

Abstract

This study examines changes in aridity levels during the mid-Holocene (approximately 6000 cal. yr ago) using multi-model simulations from the Paleoclimate Modelling Intercomparison Project Phase III. Overall, there is little difference in the total area of drylands from the preindustrial period; global drylands are 8% wetter than during the preindustrial period as measured by an aridity index; and 16% of preindustrial drylands convert to a wetter climate subtype, double the sum of zones that are replaced by a drier category. Considerable variations are present among regions with major contractions of each dryland subtype from northern Africa to South Asia and the main expansions of arid, semiarid, and dry subhumid climates in southern hemisphere continents. The difference in precipitation is the leading factor of the aforementioned changes. The second factor is the altered potential evapotranspiration as mainly induced by relative humidity, which contributes to additional aridity changes in a same direction as precipitation does. The collective effects of precipitation and relative humidity account for more than 80% of the dryland variations. In comparison, the simulated aridity change is in reasonable agreement with reconstructions, while there are model–data discrepancies for Australia and uncertainties across proxies for southern Africa.

Funder

National Natural Science Foundation of China

the National Key R&D Program of China

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3