Sediment chronology in Antarctic deglacial sediments: Reconciling organic carbon 14C ages to carbonate 14C ages using Ramped PyrOx

Author:

Subt Cristina1,Fangman Kimberly A2,Wellner Julia S2,Rosenheim Brad E1

Affiliation:

1. College of Marine Science, University of South Florida, USA

2. Department of Earth and Atmospheric Sciences, University of Houston, USA

Abstract

We present the first study which directly compares carbonate radiocarbon (14C) dates with the Ramped PyrOx (RP) radiocarbon dating technique within a single sediment core, and we confirm the utility for the latter constructing chronologies of high latitude, Holocene marine margin sediment successions. Historically, the heavily detrital nature of Antarctic margin sedimentary organic material and lack of carbonate preservation have made these sediments difficult to date accurately. Here, we use archived cores with existing foraminiferal ages to compare with RP dates at equal or similar depth intervals. The lowest temperature RP splits were integrated over narrower intervals than in previous studies to reduce the amount of mixing with older, more thermochemically stable end-members during pyrolytic decomposition. Ages of the low-temperature RP splits coincide with their corresponding carbonate counterparts, suggesting that the RP 14C dating method is a reliable alternative to carbonate dates in sediments where carbonates are absent or not sufficiently preserved for 14C dating. The rarity of calcareous material in most Antarctic sediments often obligates the use of the bulk acid insoluble organic (AIO) fraction of the sediment, which can be problematic because of contamination by older carbon. The bulk AIO 14C ages, which are calculated using the weighted arithmetic mean of all RP splits of individual samples, show that age reversals and biases can occur using bulk AIO dates for age models because of variable proportions of pre-aged organic matter down-core. The application of the RP dating method can reduce these effects to produce a more reliable chronology that is statistically identical to the foraminiferal dating chronology.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3