Holocene chemostratigraphy of spring sediments in Range Creek Canyon, Utah, USA

Author:

Ward Danielle1ORCID,Brunelle Andrea1ORCID,Bowen Brenda B2

Affiliation:

1. Department of Geography, University of Utah, USA

2. Department of Geology and Geophysics, University of Utah, USA

Abstract

This study builds off the paleoclimatic reconstruction created by Hart et al. that used a multiproxy study to examine the role of moisture in the exodus of the Fremont from Range Creek Canyon in the 12th century. For this research, elemental ratios, weathering indices, and pollen data from two wetland spring sediment cores were used to compare with the existing Hart et al. paleoclimatic reconstruction (Objective 1). Elemental ratios and pollen data proved to be effective proxies for precipitation fluctuation, with the ratio of Pinus to Juniperus pollen representing effective moisture and increasing with the intensity of chemical weathering. Elemental data were additionally used to identify crypto tephra in the cores to validate Range Creek Canyon’s existing chronology (Objective 2). The XRF analysis of the sediment cores constrained the chronology of environmental change in the canyon by identifying the elemental signature of the Mazama eruption (7627 ± 150 cal. year BP). The concentration of Al, Y, and Ti were 50 times higher in this layer than elsewhere in the core, indicating a sudden depositional event, such as a volcanic eruption. Based on the multiproxy data and confirmed chronology, the Fremont entered the canyon during a period of elevated precipitation lasting until 600 AD. Precipitation levels remained steady until 1200 AD, after which precipitation levels decreased, causing drought conditions that coincide with the Fremont’s departure from Range Creek Canyon.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3