Middle- to late-Holocene storminess in Brittany (NW France): Part II – The chronology of events and climate forcing

Author:

Van Vliet-Lanoë Brigitte1,Penaud Aurélie1,Hénaff Alain1,Delacourt Christophe1,Fernane Assia1,Goslin Jérôme1,Hallégouët Bernard1,Le Cornec Erwan2

Affiliation:

1. Brest University, France

2. GEOS AEL, France

Abstract

This study focuses on the recurring climate conditions required for the largest storms occurring in NW France (Brittany). It is based on the analysed records of storm events along Western Brittany coast (see Part I). In this manuscript (Part II), storm recurrence is explored along with forcing mechanisms. Periods of more frequent storm events over the two last centuries are analysed first in order to link these events with possible forcing mechanisms (North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO) modes) triggering the most destructive storms. Then, palaeostorm events are discussed at the Holocene scale, from 6000 yr BP to present, to verify the forcing mechanisms. Most recorded events appear to be linked with cooling episodes, mostly in winter, a transition to or from a negative winter NAO mode, a positive AMO mode. Extreme storms occur immediately prior to the ‘Medieval Warm Period’ (MWP). Maximum effects are reached prior to the onset of the MWP and during the Maunder and Dalton solar minima. Low storm activity occurred during the Spörer Minimum linked to an acceleration of the Atlantic Meridional Overturning Circulation (AMOC). Main storm triggers seem to correspond to a positive AMO mode with an unstable jetstream configuration driving a negative NAO. In this study, four specific weather configurations were defined to explain each type of recorded storminess. The strongest storms correspond to low AMO and decennial-negative NAO modes (e.g. ‘Little Ice Age’), or high AMO in association with dominant low NAO modes, as during the early Middle Age and present-day period. Fresh or warm oceans in association with a positive NAO mode are stormy but with very low sting storms frequency. Although in agreement with the orbital forcing and the Holocene glacial history, increasing storm frequency and intensity is most probably partly biased by continuous sea-level rise and resulting erosion.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

Reference124 articles.

1. Is there a planetary influence on solar activity?

2. Recent observed changes in severe storms over the United Kingdom and Iceland

3. Is the North Atlantic Oscillation modulated by solar and lunar cycles? Some evidences from Hurst autocorrelation analysis

4. Ayrault F (1998) Environnement, structure et évolution des dépressions météorologiques: réalité climatologique et modèles types. PhD Thesis, Paul Sabatier University, 328 pp.

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3