Placing the AD 2014–2016 ‘protracted’ El Niño episode into a long-term context

Author:

Allan Robert J1ORCID,Gergis Joëlle23,D’Arrigo Rosanne D4

Affiliation:

1. Climate Monitoring and Attribution Group, Met Office Hadley Centre, UK

2. Fenner School of Environment & Society, Australian National University, Australia

3. ARC Centre of Excellence for Climate Extremes, Australian National University, Australia

4. Lamont-Doherty Earth Observatory, Columbia University, USA

Abstract

Although extended or ‘protracted’ El Niño and La Niña episodes were first suggested nearly 20 years ago, they have not received the attention of other ‘flavours’ of the El Niño–Southern Oscillation (ENSO) or low-frequency ‘ENSO-like’ phenomena. In this study, instrumental variables and palaeoclimatic reconstructions are used to investigate the most recent ‘protracted’ El Niño episode in 2014–2016, and place it into a longer historical context. Although just reaching the threshold for such an episode, the 2014–2016 ‘protracted’ El Niño had very severe societal, agricultural, environmental and ecological impacts, particularly in western Pacific regions like eastern Australia. We show that although ‘protracted’ ENSO episodes of either phase cause similar, near-global modulations of weather and climate as during more ‘classical’ events, impacts associated with ‘protracted’ episodes last longer, with strong influences in eastern Australia. The latter is a response to the dominance of Niño 4 sea surface temperature (SST) and associated atmospheric teleconnection anomalies during ‘protracted’ ENSO episodes. Importantly, while Niño 4 SST anomalies recorded during the austral summer of 2016 were the highest values on record, an analysis of long-term palaeoclimate records indicates that there may have been episodes of greater magnitude and duration than seen in instrumental observations. This suggests that shorter instrumental observations may underestimate the risks of possible future ENSO extremes compared with those observed from multi-century palaeoclimate records. Improved knowledge of ENSO and the potential to forecast ‘protracted’ episodes would be of immense practical benefit to communities affected by the severe impacts of ENSO extremes.

Funder

centre of excellence for environmental decisions, australian research council

Joint BEIS/Defra Met Office Hadley Centre Climate Programme

NSF and NOAA. LDEO

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3