Postglacial flooding and vegetation history on the Ob River terrace, central Western Siberia based on the palaeoecological record from Lake Svetlenkoye

Author:

Amon Leeli1ORCID,Blaus Ansis1,Alliksaar Tiiu1,Heinsalu Atko1,Lapshina Elena2,Liiv Merlin1,Reitalu Triin1,Vassiljev Jüri1,Veski Siim1

Affiliation:

1. Department of Geology, Tallinn University of Technology, Estonia

2. Scientific and Study Centre ‘Dynamics of the Environment and Global Climate Change’, Yugra State University, Russia

Abstract

The hemispheric-scale climatic fluctuations during the Holocene have probably influenced the large Siberian rivers. However, detailed studies of the West Siberian Plain postglacial environmental change are scarce and the records of millennial-scale palaeohydrology are nearly absent. This paper presents the Holocene palaeoecological reconstruction based on the sedimentary record of Lake Svetlenkoye, located near the confluence of major Siberian rivers Ob and Irtysh. Postglacial history of flooding, dynamics of regional and local vegetation, sedimentation regime, geochemical changes and lake water pH were reconstructed based on multi-proxy studies. We used palaeobotanical (plant macrofossils, pollen, diatoms), geochemical (organic matter, total organic carbon and nitrogen content, carbon/nitrogen ratio) and chronological (14C dates, spheroidal fly-ash particle counts) methods. The studied sediment section started to accumulate ~11,400 cal. yr BP. The initial shallow water body was flooded by Ob River waters ~8100–8000 cal. yr BP as confirmed by a remarkable increase in the sedimentation rate and the accumulation rate of the aquatic vegetation proxies. The period of flooding coincides with the high humidity periods reconstructed from regional palaeobotanical records. About 6800–6700 cal. yr BP, the study site became isolated from the Ob River floodplain and remained a small lake until present. The diatom-based lake water pH estimates suggest fluctuations in the pH values during the Holocene, the recent decrease since 1960s being the most notable. The vegetation record revealed constant postglacial presence of tree taxa – Betula, Pinus and Picea – although in different pollen ratios and accumulation rates through time. The paludification of the surroundings occurred since ca. 8500 cal. yr BP.

Funder

Eesti Teadusagentuur

International Network for Terrestrial Research and Monitoring in the Arctic INTERACT

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3