Late-Holocene successional dynamics in a transitional forest of west-central Mexico

Author:

Figueroa-Rangel Blanca L.1,Willis Kathy J.23,Olvera-Vargas Miguel1

Affiliation:

1. Centro Universitario de la Costa Sur, Universidad de Guadalajara, Mexico

2. University of Oxford, UK

3. University of Bergen, Norway

Abstract

The determination of past successional stages, as well as the factors triggering succession, is crucial for the understanding of forest dynamics and the design of current and future management and conservation strategies. Shifts between successional stages can take decades or even centuries to occur because of tree longevity; therefore palaeoecological studies are important tools for their study. The present research involved the palaeoreconstruction of a transitional forest dominated by Pinus-Carpinus-Quercus in west-central Mexico over the last ~1230 years. The proxies employed include fossil pollen, microscopic fossil charcoal, magnetic susceptibility and organic matter content evaluated by multivariate techniques. The findings reveal that an initial cloud forest stage developed from 1230 to 1050 cal. yr BP. This stage was then interrupted for ~400 years (1050–690 cal. yr BP) when a regional climate change event decreased the number of cloud forest taxa and increased herbaceous taxa including Asteraceae, Poaceae, Plantago and Zea. The cloud forest stage recovered at 690 cal. yr BP and the community has persisted to the present time, yet this stage is dominated by human-induced taxa such as Pinus and Acacia. Whilst the dynamics of individual taxa were related to forest fires and soil erosion, changes between community types were related to an interval of regional climate change (greater aridity) that occurred between 1050 and 690 cal. yr BP. Results from this study indicate that, in order to preserve the cloud forest stage, human disturbances such as logging and agriculture should be excluded; a conservation strategy established in the transitional forest in recent years.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3