Grass phytoliths in surface sediments of the Sunderbans, India and their implications in reconstructing past deltaic environmental changes

Author:

Naskar Madhab12,Ghosh Ruby3,Das Sayantani1,Paruya Dipak Kumar1,Saradar Binod1,Yadava Madhusudan G4,Bera Subir1ORCID

Affiliation:

1. Centre of Advanced Study, Palaeobotany-Palynology Laboratory, Department of Botany, University of Calcutta, India

2. Department of Botany, Sonarpur Mahavidyalaya, India

3. Birbal Sahni Institute of Palaeosciences, India

4. Geosciences Division, Physical Research Laboratory, India

Abstract

Reliability of grass phytoliths for discriminating different deltaic sub-environments has been assessed on the modern surface sediments collected along the salinity gradient of the Sunderbans delta, India. It has been observed that grass phytolith assemblages can successfully distinguish different deltaic sub-environments especially the true mangrove zones from the mangrove associate and non-mangrove zones with minor overlaps, which further corroborated with the results of discriminant analysis (DA). Detrended correspondence analysis (DCA) and redundancy analysis (RDA) performed on the surface grass phytolith data show that salinity is the most crucial environmental parameter influencing grass phytolith distribution in the deltaic sub-environments. The potential of modern grass phytolith data in reconstructing past deltaic environmental changes has been further assessed on a late Quaternary fossil phytolith spectra from the Sunderbans spanning a sedimentary record for the last ~13.6 ka. A true mangrove environment with discernible tidal influence has been revealed between 13.6 and 3.9 ka. Absence of true mangrove–indicator grass phytoliths between ~3.9 and 2.2 ka further suggests disappearance of mangrove vegetation from this part of the Sunderbans which might have recolonized during ~2.2–0.8 ka. A mangrove associated or non-mangrove environment with little or no tidal influence came into existence in the study area since 0.8 ka onwards. A comparison with some earlier records suggests that the present grass phytolith-based palaeoenvironmental data shows conformity with the past dynamics in mangrove ecosystem in the east coast of India in respect to relative sea level changes.

Funder

University Grants Commission

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3