Multiproxy lake sediment records at the northern and southern boundaries of the Aspen Parkland region of Manitoba, Canada

Author:

Teed Rebecca1,Umbanhower Charles2,Camill Philip3

Affiliation:

1. Earth and Environmental Sciences, Wright State University, Dayton OH 45435, USA,

2. Department of Biology, Saint Olaf College, Northfield MN, USA

3. Department of Biology, Bowdoin College, Brunswick ME, USA

Abstract

Aspen parkland in central Canada may change substantially with increased warming and aridity as prairies replace forests, fire return intervals decrease and lake levels decline. We examined the relationships among vegetation, climate, fire and lake-ecosystem properties using lake sediment cores from the current northern and southern boundaries of the aspen parkland in southwestern Manitoba. We analyzed pollen, charcoal, sediment magnetics, biogenic silica, phosphorus, grain size and LOI, and dated the cores using 210Pb and 14C (AMS, calibrated). The Jones Lake record, from the southern edge of the parkland, began considerably earlier (~11 000 cal. BP) than the Mallard Pond record at the northern edge (~8600 cal. BP). These sites were characterized as prairie communities with low fire severity and relatively low lake productivity during the warm, dry period from 9000 to 6000 cal. BP. Beginning around 6500 cal. BP at Jones Lake and 3400 cal. BP at Mallard Pond, conditions appeared to get wetter as indicated by arboreal pollen percentage increases from ~30% to 40— 60%, concurrent with a rise in charcoal and proxies for lake productivity (biogenic silica and percent organic phosphorus). Similar to previous studies along the prairie—forest border, we found that charcoal increased during warmer, wetter periods with increased forest cover and fuel loading rather than during warmer, drier periods of prairie dominance. Our results underscore the importance of regional changes in moisture, and its effects on lake levels and forest biomass, as a dominant control of the aspen parkland dynamics.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

Reference64 articles.

1. THE BIOLOGY OF CANADIAN WEEDS.: 34. Myriophyllum spicatum L.

2. Anderson, T.W., Mathewes, R.W. and Schweger, C.E. 1989: Holocene climatic trends in Canada with specific reference to the Hypsithermal Interval. In Fulton, R.J., editor, Quaternary geology of Canada and Greenland: the geology of North America, v. K1. Geological Survey of Canada and Geological Survey of America, 520-28.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3