Paleoclimatic and archaeological evidence from Lake Suches for highland Andean refugia during the arid middle-Holocene

Author:

Vining Benjamin R1ORCID,Steinman Byron A2,Abbott Mark B3,Woods Arielle3

Affiliation:

1. Department of Anthropology, University of Arkansas-Fayetteville, USA

2. Large Lakes Observatory, University of Minnesota Duluth, USA

3. Department of Geology and Environmental Science, University of Pittsburgh, USA

Abstract

Severe aridity during the mid-Holocene, ca. 8.0–4.0 kyr BP, led to extreme ecological stress in the tropical Andes. Here, we report paleolimnological and archeological data from Lake Suches in southern Peru (70° 24’ 12” W, 16° 55’ 35” S) spanning 13.6–4.4 kyr BP. Integrated paleoclimate and archeological data reveal that moisture was locally available and the basin served as an ecological refugium throughout the mid-Holocene. Mid-Holocene aridity was established no later than 7.2 kyr BP, with maximum aridity ca. 5.5–4.8 kyr BP. However, water levels in Lake Suches were sustained throughout peak middle-Holocene aridity, even as other systems desiccated. Isotopic enrichment of water in Lake Suches (δ18Olake) and extensive wetlands (δ18Obofedal) surrounding the lake indicate prolonged residence time. These reservoirs, combined with elevation-linked hydrographic factors, mitigated mid-Holocene net decreases in atmospheric moisture. Archeological data from Suches indicate successive population increases beginning ca. 11.0–9.8 kyr BP as drier but more stable early Holocene conditions were established regionally. Population maxima in Suches during the mid-Holocene/mid-Archaic period ca. 9.0–7.0 kyr BP coincide with peak aridity in the Titicaca and Atacama systems, as well as documented archeological hiatuses in these regions. Population decreases coincide with peak aridity recorded in Lake Suches ca. 6.0–5.0 kyr BP, but the basin was never fully abandoned. Evidence for refugial microenvironments is key to understanding the persistence of human populations and other endemic Andean flora and fauna during the highly adverse climates of the middle-Holocene. We outline several mechanisms which likely explain the formation of refugia linked to bofedales and hydrographic characteristics of Suches. Understanding refugial dynamics will be key to understanding the effects of past climatic change, as well as addressing current warming and decreased precipitation trends in the tropical Andes.

Funder

Division of Atmospheric and Geospace Sciences

Directorate for Social, Behavioral and Economic Sciences

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3