Surface pollen deposition on glacier forelands in southern Norway I: local patterns of representation and source area at Storbreen, Jotunheimen

Author:

Pardoe H. S.1

Affiliation:

1. Department of Biodiversity and Systematic Biology, National Museum Wales, UK

Abstract

The relationship between vegetation and surface pollen deposition is examined at Storbreen glacier foreland where a clear plant succession exists. The aim is to determine whether the distinct plant communities present produce characteristic pollen assemblages. The influence of environmental factors is also considered. Pollen assemblages from moss polsters, collected from 22 paired sampling sites across the foreland, are compared with local vegetation. Two-way indicator species analysis and detrended correspondence analysis are employed to identify clusters and sequences, initially in the vegetation data and subsequently in the pollen data sets. Vegetation and pollen data are compared simultaneously using canonical correspondence analysis. Three main plant communities are distinguished: pioneer, heath and snowbed. Broadly, each community produces characteristic pollen assemblages. Boundaries between groups are not clear-cut, reflecting the mosaic of plant communities present. Recognition of distinct plant communities is hampered by the prevalence of long-distance arboreal pollen and poor representation of entomophillously pollinated taxa. Late in the succession up to 78% of pollen could originate locally. Use of the non-arboreal pollen sum significantly improves correspondence with vegetation. The importance of indicator taxa is considered and both Salix and Empetrum are found to distinguish successfully early phases of succession from later phases. Strong correlations exist between the primary ordination axes of vegetation and pollen and with terrain age and altitude (for example, the correlation between altitude and total land pollen Axis 1 is r= -0.76). The surface data add new information to the interpretation of tree colonization in the area during the Holocene.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3