The significance of fragipans to early- Holocene slope failure: application of physically based modelling

Author:

Brooks S.M.1,Anderson M.G.1,Crabtree K.1

Affiliation:

1. Department of Geography, University of Bristol University Road, Bristol BSB 1SS, UK

Abstract

Interpreting slope failure in the early Holocene has traditionally focused on climatic change. Little research considers the role of soil-profile characteristics, in particular the effect of fragipan occurrence. Fragipan formation has been associated with periglacial processes in northwest Europe, but recent evidence suggests that fully developed fragipans did not exist until 2000-3000 years after the close of the Lateglacial. Fragipans have been widely reported as having reduced permeability and altered soil moisture retention curves. The implications of such hydrological properties for slope stability is considered in this paper, by comparing stability of a soil profile containing a fragipan with one that is freely draining using a physically based soil hydrology-slope stability model. The results suggest differences in angles of limiting stability of 15° between the two soil profiles, while differences resulting from likely climatic variation are only 3-4°. Modelling results of maximum stable slope angles for fragipans are consistent with those reported in the landscape, placing confidence in model outputs. This is used as a basis for suggesting that pedologic factors might be more significant than climatic factors when interpreting early Holocene slope instability. The potential utility of physically based modelling is explored more generally, and suggestions are made for future research to elucidate more fully the role of fragipans in slope stability.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3