Influence of geomorphological setting, fluvial-, glaciofluvial- and mass-movement processes on sedimentation in alpine lakes

Author:

Rubensdotter Lena1,Rosqvist Gunhild2

Affiliation:

1. Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, NO-7040 Trondheim, Norway,

2. Department of Physical Geography and Quaternary Geology, Stockholm University, SE-106 91 Stockholm, Sweden

Abstract

Lacustrine sediments are often used for paleoclimate reconstructions as continuous archives of several physical and biological proxies. The relation between autochthonous and allochthonous sedimentation in alpine lakes is a complex system that may cause difficulties when interpreting biological and physical parameters. Results from previous studies of alpine lakes in northern Sweden have demonstrated that non-glacial processes produce minerogenic lake deposits with similar physical characteristics (density, LOI, magnetic susceptibility, grain-size) as those that have been associated with glacier fluctuations in proglacial lakes. In this study of two consecutive proglacial alpine lakes we show that fluvial redeposition of alluvial fan deposits significantly affects the Holocene lake sedimentation. Depending on the geomorphological setting, such fluvial redeposition signals may actually overprint a glaciofluvial signal. We also show that minerogenic laminations of fluvial origin are impossible to separate from the type of laminations usually used to infer glacier activity using the most common lithological sediment parameters. This emphasizes the complexity of sediment transport system in proglacial (paraglacial) settings where redeposition of older glacial sediment is of major importance. Our results highlight the need for thorough understanding of the geomorphological setting before inferences are made about climate variations from sedimentation in alpine lakes. Both lakes in this study contain sediment sequences with both episodic (turbidites) and continuously deposited sediments. Unfortunately we have too few radiocarbon dates to exactly date the turbidites but it is clear that turbidite layers in any case should be excluded from age model constructions since episodic sedimentation significantly influences the sediment age—depth relationship. In our age-model turbidites cause a potential dating error of several hundred, up to a thousand, years.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3