Holocene biogeography of Tsuga mertensiana and other conifers in the Kenai Mountains and Prince William Sound, south-central Alaska

Author:

Anderson R Scott1,Kaufman Darrell S1,Berg Edward2,Schiff Caleb1,Daigle Thomas13

Affiliation:

1. School of Earth Sciences and Environmental Sustainability, Northern Arizona University, USA

2. US Fish and Wildlife Service, Kenai National Wildlife Refuge, USA

3. GEI Consultants, Inc., USA

Abstract

Several important North American coastal conifers – having immigrated during the Holocene from the southeast – reach their northern and upper elevation limits in south-central Alaska. However, our understanding of the specific timing of migration has been incomplete. Here, we use two new pollen profiles from a coastal and a high-elevation site in the Eastern Kenai Peninsula–Prince William Sound region, along with other published pollen records, to investigate the Holocene biogeography and development history of the modern coastal Picea (spruce)– Tsuga (hemlock) forest. Tsuga mertensiana became established at Mica Lake (100 m elevation, near Prince William Sound) by 6000 cal. BP and at Goat Lake (550 m elevation in the Kenai Mountains) sometime after 3000 years ago. Tsuga heterophylla was the last major conifer to arrive in the region. Although driven partially by climate change, major vegetation changes during much of the Holocene are difficult to interpret exclusively in terms of climate, with periods of slow migration alternating with more rapid movement. T. mertensiana expanded slowly northeastward in the early Holocene, compared with Picea sitchensis or T. heterophylla. Difficulty of invading an already established conifer forest may account for this. We suggest that during the early Holocene, non-climatic factors as well as proximity to refugia, influenced rates of migration. Climate may have been more important after ~2600 cal. BP. Continued expansion of T. mertensiana at Goat Lake at the Medieval Climate Anomaly (MCA)–‘Little Ice Age’ (‘LIA’) transition suggests warm and wet winters. But expansion of T. mertensiana at both sites was arrested during the colder climate of the ‘LIA’. The decline was more extensive at Goat Lake, where climatic conditions may have been severe enough to reduce or eliminate the T. mertensiana population. T. mertensiana continued its expansion around Goat Lake after the ‘LIA’.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3