Effect of climatic and palaeoenvironmental changes on the occurrence of Holocene bats in the Swiss Alps

Author:

Blant Michel1,Moretti Marco2,Tinner Willy3

Affiliation:

1. Swiss Institute for Speleology and Karst studies, Switzerland,

2. Swiss Federal Research Institute WSL, Insubric Ecosystems Research Group, Switzerland, Bat Protection Center Ticino (CPT), Switzerland

3. Institute of Plant Sciences (IPS) and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Switzerland

Abstract

A large-scale palaeozoological study compared 45 14C-dated bat remains from the southern and northern Swiss Alps with palaeovegetational and palaeoclimatic data. Four thermophilous (warm-demanding) and four psychrophilous (cold-tolerant) bat species, mainly forest dwellers, were selected for the study. Myotis blythii is the oldest bat species recorded in the Alps, i.e. on the southern side, going back to the early Holocene at 10 500 cal. BP. Our study showed that thermophilous species (e.g. Myotis bechsteinii and Rhinolophus hipposideros) were most abundant during the Holocene climatic optimum in Central Europe (10 000—4000 cal. BP), when warm-demanding mixed forests were dominant. Psychrophilous species such as Myotis brandtii also occurred during the climatic optimum, but most of the samples fall into the onset of the late Holocene (Sub-Atlantic period), when summer temperatures were already declining. These species declined in the southern Alps after 4000 cal. BP, when fire was intensively used by humans to convert portions of the forest into open land. This fire practice modified forest species composition and structure, with effects on forest-dwelling bat communities. We conclude that during the early and mid Holocene bat community compositions mainly depended on climate and related vegetation and forest structure dynamics. With increasing land use during the mid and late Holocene, anthropogenic changes of forest composition and creation of open habitats increasingly co-determined bat-population dynamics in the Alps. These Swiss findings are in agreement with previous results from eastern Central Europe.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3