A low-frequency summer temperature reconstruction for the United States Southwest, 3000 BC–AD 2000

Author:

Gillreath-Brown Andrew123ORCID,Bocinsky R Kyle45ORCID,Kohler Timothy A156

Affiliation:

1. Department of Anthropology, Washington State University, USA

2. Department of Archaeology, Max Planck Institute for Geoanthropology, Germany

3. Scripps Institution of Oceanography, University of California San Diego, USA

4. Montana Climate Office, W.A. Franke College of Forestry and Conservation, University of Montana, USA

5. Crow Canyon Archaeological Center, USA

6. Santa Fe Institute, USA

Abstract

Temperature variability likely played an important role in determining the spread and productive potential of North America’s key prehispanic agricultural staple, maize. The United States Southwest (SWUS) also served as the gateway for maize to reach portions of North America to the north and east. Existing temperature reconstructions for the SWUS are typically low in spatial or temporal resolution, shallow in time depth, or subject to unknown degrees of insensitivity to low-frequency variability, hindering accurate determination of temperature’s role in agricultural productivity and variability in distribution and success of prehispanic farmers. Here, we develop a model-based modern analog technique (MAT) approach applied to 29 SWUS fossil pollen sites to reconstruct July temperatures from 3000 BC to AD 2000. Temperatures were generally warmer than or similar to those of the modern (1961–1990) period until the first century AD. Our reconstruction also notes rapid warming beginning in the AD 1800s; modern conditions are unprecedented in at least the last five millennia in the SWUS. Temperature minima were reached around 1800 BC, 1000 BC, AD 400 (the global minimum in this series), the mid-to-late AD 900s, and the AD 1500s. Summer temperatures were generally depressed relative to northern hemisphere norms by a dominance of El Niño-like conditions during much of the second millenium BC and the first millenium AD, but somewhat elevated relative to those same norms in other periods, including from about AD 1300 to the present, due to the dominance of La Niña-like conditions.

Funder

Washington State University

SBE Office of Multidisciplinary Activities

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3