Modern pollen–climate relationships and their application for pollen-based quantitative climate reconstruction of the mid-Holocene on the southern Korean Peninsula

Author:

Lee Jaeyoung12,Jun Chang-Pyo2,Yi Sangheon12ORCID,Kim Yongmi2,Lee Eunmi23,Kim Dongwook2

Affiliation:

1. Department of Petroleum Resources Engineering, Korea University of Science and Technology, Republic of Korea

2. Korea Institute of Geoscience and Mineral Resources, Republic of Korea

3. Department of Geology and Geophysics, Kangwon National University, Republic of Korea

Abstract

A modern pollen dataset is a prerequisite for reconstructing quantitative paleoclimate and paleovegetation cover using fossil pollen records. Although multiple modern pollen–climate datasets have been established covering a wide range of climate conditions, such datasets are exceedingly rare for the Korean Peninsula (KP). In this study, we acquired a modern pollen dataset from 198 surface soil samples collected on 37 mountains on the southern KP. Redundancy analysis (RDA) and variation partitioning results identified mean annual temperature (Tann) as the most important climate variable shaping pollen assemblages on the southern KP. Using the pollen–climate relationships inferred from the RDA, we applied the Huisman–Olff–Fresco model and determined that arboreal pollen taxa responded sensitively to the climatic gradient, whereas non-arboreal pollen taxa did not. We applied weighted averaging–partial least squares (WA-PLS) and the modern analog technique (MAT) to the pollen dataset, and a comparison of the results showed that MAT performed better than WA-PLS. A transfer function was applied to fossil pollen records from the areas covered by our dataset; the results confirmed that annual precipitation (Pann) and Tann were modulated by different mechanisms, with Pann strongly affected by El Niño–Southern Oscillation-driven typhoons during the Holocene, whereas Tann was mainly influenced by the Tsushima Warm Current from 7500 to 5100 cal yr BP depending on Kuroshio Current inflow intensity, and subsequently followed by the East Asian winter monsoon during 5100–3400 cal yr BP.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3