Evolution of the thermal state of permafrost under climate warming in Central Yakutia

Author:

Varlamov Stepan P1ORCID,Skachkov Yuri B1,Skryabin Pavel N1

Affiliation:

1. Melnikov Permafrost Institute Siberian Branch of Russian Academy of Sciences, Yakutsk, Russia

Abstract

The relevance of the problem under review is explained by the need to study the thermal response of permafrost to the modern climate change. Evolution of the thermal state of grounds has been studied with a view to evaluate the effects of modern climate warming on permafrost in Central Yakutia. The leading method to study this problem is the arrangement and performance of long-term monitoring observations of the permafrost thermal state that enable quantitative evaluation of the thermal response of upper permafrost layers to climatic fluctuations of recent decades. The analysis of long-term records from weather stations in the region has clearly revealed one of the highest increasing trends in the mean annual air temperature in northern Russia. Quantitative relationships in the long-term variability of ground thermal parameters, such as ground temperature at the bottom of the active layer, at the bottom of the annual heat exchange layer, and active thaw depth, have been established. The thermal state dynamics of the annual heat exchange layer under climate warming indicates that both warm and cold permafrost are thermally stable. Short-term variability of the snow accumulation regime is the main factor controlling the thermal state of the ground in permafrost landscapes. The active-layer thickness is characterized by low interannual variability and exhibits little response to climate warming, with no statistically meaningful increasing or decreasing trend. The results of ground thermal monitoring can be extended to similar landscapes in the region, providing a reliable basis for predicting heat transfer in natural landscapes.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

Reference23 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3