Mid- to late-Holocene oceanographic variability on the Southeast Greenland shelf

Author:

Andresen CS1,Hansen MJ2,Seidenkrantz M-S2,Jennings AE3,Knudsen MF2,Nørgaard-Pedersen N1,Larsen NK2,Kuijpers A1,Pearce C2

Affiliation:

1. Geological Survey of Denmark and Greenland, Denmark

2. Aarhus University, Denmark

3. University of Colorado at Boulder, USA

Abstract

A reconstruction of oceanographic variability of the past 5800 years on the southeast Greenland shelf was obtained by analysing a combined marine sediment record based on two cores from the same site. Cores Fox04G/05R were retrieved from a side basin to a cross-shelf trough connecting the 900 m deep Sermilik Fjord with the Irminger Sea in the northwestern North Atlantic. The record was analysed in terms of grain size distribution, XRF and benthic and planktonic foraminiferal content and the chronology was obtained on the basis of 210Pb and 14C dating. The late-Holocene paleoceanographic variations in the record were characterised by a marked influence from the Irminger Current (IC) at the onset of the record at 5800 cal. yr BP and the regional Holocene Climatic Optimum between 5200 and 4200 cal. yr BP. After 3600 cal. yr BP Neoglacial cooling with increased influence of polar waters from the East Greenland Current (EGC) diminished the influence from the IC. Between 1500 and 700 cal. yr BP, the environment was highly dominated by cold low-salinity water masses characterised by sea ice forming locally and/or transported with an intensified EGC. At 700 cal. yr BP, concordant with the onset of the ‘Little Ice Age’, inflow of IC water masses intensified, notably during short-lived warming episodes of the North Atlantic Current most likely related to a contracted subpolar gyre. At the same time, the EGC polar water transport also intensified leading to a stratified water column on the shelf and this may have favoured entrainment of warm subsurface IC waters. Alternatively, the relatively warm rim of the eastern subpolar gyre may have promoted intense submarine melting of extended Southeast Greenland outlet glaciers at this time, producing enhanced meltwater outflow which favoured estuarine circulation processes maintaining the inflow of IC water masses.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3