Late-Holocene palaeoenvironmental reconstruction from a lake in the Amazon Rainforest-Tropical Savanna (Cerrado) boundary in Brazil using a multi-proxy approach

Author:

Milena Souza Kury12ORCID,Luciane Silva Moreira1,Renato Campello Cordeiro1,Abdelfettah Sifeddine34,Bruno Turcq3,Nicolás Misailidis Stríkis1,Matheus Simões Santos1

Affiliation:

1. Departamento de Geoquímica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil

2. Fundação Cearense de Meteorologia e Recursos Hídricos (FUNCEME), Fortaleza, Ceará, Brazil

3. LOCEAN Laboratory, IRD-Sorbonne Universités (UPMC, Univ Paris 06)-CNRS-MNHN, Bondy, France

4. ERC2-Université de Quisqueya. Port au Prince - Haïti

Abstract

As an ecotone, the region between the Amazon Rainforest and Tropical Savanna (Cerrado) biomes is, by definition, more susceptible to climate change. Therefore, understanding palaeoenvironmental dynamics is essential to address the future responses of such transition areas to climatic fluctuations. In this context, we present a new sediment record for the Late-Holocene retrieved from Barro-Preto, currently an oxbow lake located in an ecotone at the southern Brazilian Amazon border. Our multi-proxy data include carbon and nitrogen isotopes, as well as bulk TOC, chlorophyll derivatives, grain-size and microcharcoal analyses, all anchored on a radiocarbon-dated chronology. The sedimentary process recorded at the Barro-Preto Lake responded to both local and regional climate dynamics. It was influenced by river excursions associated to local responses to precipitation changes by the activation of the palaeochannel connecting the main-stem river and the Barro-Preto lake. This activation was evidenced by the presence of different colour lithology laminations accompanied by coarser sediments and also by climate conditions known to influence the Amazon region. Depositional processes linked to lake dynamics and different oxbow lake cycle stages were also important to explain the changes verified in the Barro-Preto record, endorsing the use of this lake formation for palaeoclimatic reconstructions. The record indicated a rising humidity trend, reflected by a progressive increase in lacustrine productivity, in accordance to other studies carried out in the Amazon region concerning the Late-Holocene, associated with a more southward displacement of the Intertropical Convergence Zone. Despite this rising humidity trend, dry episodic events during the Late-Holocene were evidenced by charcoal data, also coherent with regional Amazon studies, albeit exhibiting increased intensity, suggesting that the transitional nature of the environment might have influenced susceptibility to fires.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3