Magnetic properties of tidal flat sediments on the Yangtze coast, China: Early diagenetic alteration and implications

Author:

Chen Ting1,Wang Zhanghua1,Wu Xuxu1,Gao Xiaoqin1,Li Lin1,Zhan Qing2

Affiliation:

1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, China

2. Shanghai Geological Survey, Shanghai 200072, China

Abstract

Measurements of magnetic properties, total organic carbon (TOC) and total sulphur (TS) were performed on recent tidal flat sediments from the Feng-Xian (FX) and Bei-Bu-Gang (BBG) areas of the Yangtze coast and on Holocene tidal flat sediments from core SL67 from the southern Yangtze delta plain, China. The results indicate that greigite has likely formed in the recent upper and middle tidal flat sediments of cores FX and BBG, which are enriched in TOC and TS. Greigite is also present in association with pyrite in the early to middle Holocene saltmarsh and tidal flat sediments of SL67. The abundance of greigite in the early Holocene basal saltmarsh sediments of core SL67, along with the extremely low values of TS/TOC, suggest the presence of either a limited sulphate supply from seawater or a major terrestrial source of organic matter that decomposed slowly. The presence of greigite in mid-Holocene lower tidal flat sediments that contained low amounts of TOC indicates an upward diffusion of CH4 and H2S from the underlying upper tidal flat sediments. A comparison between the sediments of core SL67 and those of the modern tidal flat suggests that early diagenesis (including selective dissolution and pyritisation) continued after the sediments were buried during the Holocene, resulting in the depletion of soil-derived superparamagnetic (SP) particles and the enhanced magnetic properties because of authigenic greigite. However, antiferromagnetic magnetic minerals have not been altered by early diagenesis. Thus, magnetic parameter hard isothermal remanent magnetisation (HIRM) which preserved the primary magnetic signals reflects fluctuations in the detrital mineral input to the core site and records a two-stage 8.2 ka cooling event.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3