Decadal high-resolution multi-proxy analysis to reconstruct natural and human-induced environmental changes over the last 1350 cal. yr BP in the Altai Tavan Bogd National Park, western Mongolia

Author:

Unkelbach Julia1ORCID,Kashima Kaoru2,Punsalpaamuu Gaadan3,Shumilovskikh Lyudmila1,Behling Hermann1

Affiliation:

1. Department of Palynology and Climate Dynamics, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Germany

2. Department of Earth and Planetary Sciences, Kyushu University, Japan

3. Department of Biology, Mongolian State University of Education, Mongolia

Abstract

The ‘Altai Tavan Bogd’ National Park in the north-western part of the Mongolian Altai, Central Asia, is located in a forest-steppe ecosystem. It occurs under the influence of extreme continental and montane climate and is sensitive to natural and anthropogenic impacts. High-resolution (<20 years per sample) multi-proxy data of pollen, non-pollen palynomorphs (NPPs), macro-charcoal, diatoms, and XRF scanning from radiocarbon-dated lacustrine sediments reveal various environmental changes and the impact of different settlement periods for the late-Holocene. From 1350 to 820 cal. yr BP (AD 600–1130), the distribution of grass steppe indicates a climate similar to present-day conditions. Rapid improvements of climatic conditions (e.g. increased rainfall events) possibly favored a recovery of forest-steppe encouraging nomadic movements into alpine areas. In the period from 820 to 400 cal. yr BP (AD 1130–1550), the decline of forested areas suggests an increasingly drier and possibly colder climate. Some political shifts during the Mongol Empire (744–582 cal. yr BP; AD 1206–1368) favored variations in nomadic grazing habits. After 400 cal. yr BP (AD 1550), moisture and temperature increased slightly, and from ca. 40 cal. yr BP (AD 1910) to present, annual temperature continued to increase more markedly favoring an additional water availability due to permafrost degradation. Diatom data suggest several intervals of increased water availability in all periods which might have caused erosion due to heavier rainfall events or increased snow melt. Immediately after most of these high-water intervals, NPP data reveal periods of increased grazing activities in the area.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3