Long-term environmental change in eastern Tasmania: Vegetation, climate and fire at Stoney Lagoon

Author:

Jones Penelope J12,Thomas Ian1,Fletcher Michael-Shawn1

Affiliation:

1. School of Geography, University of Melbourne, Australia

2. School of Biological Sciences, University of Tasmania, Australia

Abstract

Tasmania’s dry, inland east is ideally positioned to inform models of late Quaternary environmental change in southern Australasia. Despite this, it remains poorly represented in the palaeoecological record. Here, we seek to address this with a >13,000-year vegetation and fire history from Stoney Lagoon, a site at the eastern margin of Tasmania’s inland Midlands plains. Pollen and charcoal analysis indicates that here, a relatively moist early deglacial was followed by a dry later deglacial (ca. 14,000–12,000 cal. BP), when sclerophyll forests became well established and burning increased. This suggests that the Midlands’ vegetation responded to the climatic signals characterising Australia’s south-eastern coast rather than those governing developments in western Tasmania. Dry sclerophyll forest persisted throughout the Holocene; with a pronounced transition from more to less grassy understoreys between ca. 9000 and 7000 cal. BP. From the mid-Holocene, the sclerophyll community remains relatively stable. However, increased fire activity and trends in moisture-sensitive taxa suggest generally drier conditions coupled with greater hydroclimatic variability under the strengthening influence of the El Niño–Southern Oscillation (ENSO). Overall, these results highlight the role of macro-scale climatic shifts in shaping vegetation development in Tasmania’s inland east, while hinting at the concurrent importance of local ecological drivers. This highlights the need for spatially diverse studies to understand interactions between drivers of long-term environmental change in sub-humid southern Australia. This research also supports conservation by strengthening understandings of pre-colonial baselines in this highly modified landscape.

Funder

Australian Research Council

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3