The changing extent of marine-terminating glaciers and ice caps in northeastern Svalbard since the ‘Little Ice Age’ from marine-geophysical records

Author:

Dowdeswell Julian A1ORCID,Ottesen Dag2,Bellec Valerie K2

Affiliation:

1. Scott Polar Research Institute, University of Cambridge, UK

2. Geological Survey of Norway, Norway

Abstract

Climate warming in Svalbard since the end of the ‘Little Ice Age’ early in the 20th century has reduced glacier extent in the archipelago. Previous attempts to reconstruct ‘Little Ice Age’ glacier limits have encountered problems in specifying the area of tidewater glacier advances because it is difficult to estimate the past positions of their marine termini. Multibeam echo-sounding data are needed to map past glacier extent offshore, especially in open-marine settings where subaerial lateral moraines cannot be used due to the absence of fjord walls. We use the submarine glacial landform record to measure the recent limits of advance of over 30 marine-terminating northeastern Svalbard glaciers and ice caps. Our results demonstrate that previous work has underestimated the ice-covered area relative to today by about 40% for northeastern Svalbard (excluding southeast Austfonna) because marine-geophysical evidence in the form of submarine terminal moraines was not included. We show that the recent ice extent was 1753 km2 larger than today over our full area of multibeam data coverage; about 5% of the total modern ice cover of Svalbard. It has often been assumed that moraine ridges located within a few kilometres of modern ice fronts in Svalbard represent either a ‘Little Ice Age’ maximum or relate to surge activity over the past century or so. In the marine environment of northeastern Svalbard, this timing can often be confirmed by reference to early historical maps and aerial photographs. Assemblages of submarine glacial landforms inshore of recently deposited terminal moraines suggest whether a recent advance may be a result of surging or ‘Little Ice Age’ climatic cooling relative to today. However, older terminal moraines do exist in the archipelago, as shown by radiocarbon and 10Be dating of Holocene moraine ridges.

Funder

natural environment research council

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3