Early-Holocene simulations using different forcings and resolutions in AWI-ESM

Author:

Shi Xiaoxu1ORCID,Lohmann Gerrit1,Sidorenko Dmitry1,Yang Hu1

Affiliation:

1. Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany

Abstract

The earliest part of the Holocene, from 11.5k to 7k (k = 1000 years before present), is a critical transition period between the relatively cold last deglaciation and the warm middle Holocene. It is marked by more pronounced seasonality and reduced greenhouse gases (GHGs) than the present state, as well as by the presence of the Laurentide Ice Sheet (LIS) and glacial meltwater perturbation. This paper performs experiments under pre-industrial and different early-Holocene regimes with AWI-ESM (Alfred Wegener Institute–Earth System Model), a state-of-the-art climate model with unstructured mesh and varying resolutions, to examine the sensitivity of the simulated Atlantic meridional overturning circulation (AMOC) to early-Holocene insolation, GHGs, topography (including properties of the ice sheet), and glacial meltwater perturbation. In the experiments with early-Holocene Earth orbital parameters and GHGs applied, the AWI-ESM simulation shows a JJA (June–July–August) warming and DJF (December–January–February) cooling over the mid and high latitudes compared with pre-industrial conditions, with amplification over the continents. The presence of the LIS leads to an additional regional cooling over the North America. We also simulate the meltwater event around 8.2k. Big discrepancies are found in the oceanic responses to different locations and magnitudes of freshwater discharge. Our experiments, which compare the effects of freshwater release evenly across the Labrador Sea to a more precise injection along the western boundary of the North Atlantic (the coastal region of LIS), show significant differences in the ocean circulation response, as the former produces a major decline of the AMOC and the latter yields no obvious effect on the strength of the thermohaline circulation. Furthermore, proglacial drainage of Lakes Agassiz and Ojibway leads to a fast spin-down of the AMOC, followed, however, by a gradual recovery. Most hosing experiments lead to a warming over the Nordic Sea and Barents Sea of varying magnitudes, because of an enhanced inflow from lower latitudes and a northward displacement of the North Atlantic deep convection. These processes exist in both of our high- and low-resolution experiments, but with some local discrepancies such as (1) the hosing-induced subpolar warming is much less pronounced in the high-resolution simulations; (2) LIS coastal melting in the high-resolution model leads to a slight decrease in the AMOC; and (3) the convection formation site in the low- and high-resolution experiments differs, in the former mainly over northeastern North Atlantic Ocean, but in the latter over a very shallow subpolar region along the northern edge of the North Atlantic Ocean. In conclusion, we find that our simulations capture spatially heterogeneous responses of the early-Holocene climate.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3