Holocene sea-level variability from Chesapeake Bay Tidal Marshes, USA

Author:

Cronin Thomas M1ORCID,Clevenger Megan K2,Tibert Neil E2,Prescott Tammy2,Toomey Michael1,Hubeny J Bradford3,Abbott Mark B4,Seidenstein Julia15,Whitworth Hannah1,Fisher Sam4,Wondolowski Nick4,Ruefer Anna1

Affiliation:

1. Florence Bascom Geoscience Center, US Geological Survey, Reston, VA, USA

2. University of Mary Washington, Fredericksburg, VA, USA

3. Salem State University, Salem, MA, USA

4. University of Pittsburgh, Pittsburgh, PA, USA

5. Department of Geosciences, University of Massachusetts, Amherst, MA, USA

Abstract

We reconstructed the last 10,000 years of Holocene relative sea-level rise (RSLR) from sediment core records near Chesapeake Bay, eastern United States, including new marsh records from the Potomac and Rappahannock Rivers, Virginia. Results show mean RSLR rates of 2.6 mm yr−1 from 10 to 8 kilo-annum (ka) due to combined final ice-sheet melting during deglaciation and glacio-isostatic adjustment (GIA subsidence). Mean RSLR rates from ~6 ka to present were 1.4 mm yr−1 due mainly to GIA, consistent with other East Coast marsh records and geophysical models. However, a progressively slower mean rate (<1.0 mm yr−1) characterized the last 1000 years when a multi-century-long period of tidal marsh development occurred during the ‘Medieval Climate Anomaly’ (MCA) and ‘Little Ice Age’ (LIA) in the Chesapeake Bay region and other East Coast marshes. This decrease was most likely due to climatic and glaciological processes and, correcting for GIA, represents a fall in global mean sea level (GMSL) near the end of Holocene Neoglacial cooling. These pre-historical climate- and GIA-driven Chesapeake Bay sea-level changes contrast sharply with those based on Chesapeake Bay tide-gauge rates (3.1–4.5 mm yr−1) (back to 1903). After subtracting the GIA subsidence component, these rates can be attributed to long-term (millennial) global factors of accelerated ocean thermal expansion (~1.0 mm yr−1) and mass loss from alpine glaciers and Greenland and Antarctic Ice Sheets (1.5–2.0 mm yr−1).

Funder

u.s. geological survey

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3