Reliability of mangrove radiocarbon chronologies: A case study from Mahé, Seychelles

Author:

Sefton Juliet1ORCID,Woodroffe Sarah2,Ascough Philippa3,Khan Nicole4

Affiliation:

1. Department of Earth and Ocean Sciences, Tufts University, USA

2. Department of Geography, Durham University, UK

3. Scottish Universities Environmental Research Centre, UK

4. Department of Earth Sciences, The University of Hong Kong, Hong Kong

Abstract

Mangrove sediments are valuable archives of paleoenvironmental and relative sea-level changes. The most widely applied method to obtaining chronologies of past changes in mangrove sediments is radiocarbon dating, because mangroves produce large amounts of organic matter in situ. However, there are many challenges to obtaining reliable radiocarbon chronologies because bioturbation processes from roots and crabs can rework mangrove sediments, resulting in ages that are not in stratigraphic order. Previous studies have suggested that methods that isolate specific sediment size fractions may yield ages closer to the age of the paleo depositional surface by removing younger carbon contamination from fine roots. This study examines which sample types are more likely to yield reliable radiocarbon ages using shallow cores from a mangrove environment on Mahé, Seychelles, in the Indian Ocean. We compare radiocarbon ages from bulk sediment, sieved organic concentrates and above-ground macrofossils collected from the same stratigraphic depths. Bulk sediment and organic concentrate ages are comparable, which suggests that methods that separate out different size fractions do not sample different carbon sources in Seychelles mangrove cores. Identifiable above-ground macrofossils are rare in Seychelles mangrove cores, but yield older radiocarbon ages than comparable bulk sediment or organic concentrate ages. We suggest that in Seychelles, limited accommodation space over the late-Holocene, determined by relatively stable relative sea levels, has resulted in poor preservation of above-ground macrofossils for radiocarbon dating due to low rates of burial and sediment accretion. Low accretion rates have likely resulted in a mangrove sediment sequence that is highly bioturbated and degraded, meaning both bulk sediment and organic concentrate samples are impacted by contamination from younger roots. We argue that the availability of accommodation space and sediment composition controls the reliability of mangrove radiocarbon chronologies, which has implications for sample choice and site selection.

Funder

Van Mildert College Trust

Estuarine and Coastal Sciences Association

NERC Radiocarbon Facility

International Association of Sedimentologists

Royal Geographical Society

Quaternary Research Association

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Taraxerol abundance as a proxy for in situ mangrove sediment;Organic Geochemistry;2024-05

2. Late Quaternary relative sea-level changes in the tropics;Reference Module in Earth Systems and Environmental Sciences;2023

3. Relative sea-level change in South Florida during the past ~5000 years;Global and Planetary Change;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3