Holocene sea-level change and estuary infill in North West Nelson, central New Zealand

Author:

Kennedy David M1ORCID,Risdon Beth V2,Woods Josephine LD3

Affiliation:

1. School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Australia

2. School of Geography, Earth & Environmental Studies, Victoria University of Wellington, New Zealand

3. School of Biosciences, The University of Melbourne, Australia

Abstract

The sedimentary sequences found within estuaries in the north west Nelson region of central New Zealand are investigated in order to quantify the timing of the end of the Post Glacial Marine Transgression. This region has been identified as being relatively stable in terms of vertical tectonic movement during the Holocene, but is yet to yield any reconstructions of eustatic sea level. In this study, we investigate the Holocene infill of a barrier estuary (Parapara Inlet) through sedimentological analysis and radiocarbon dating of 18 vibracores up to 4.2 m in length. It is found that the estuary infilled through a combination of lateral flood tide and fluvial delta progradation as well as vertical central basin infill. The central basin infilled at a consistent rate of 0.4 mm/year in both the mid (7.0–6.0 ka) and late-Holocene (2.5–1.5 ka). By the time of early human (Maori) settlement (c. 1 ka), the estuary surface was at low intertidal elevations with sediment being transported from the fluvial to tidal delta. A discernible change in sedimentation rates could not be associated with Maori settlement; however, infill rates increased to at least 12.5 mm/year in the past 150 years due hydraulic sluicing associated with mining. The sedimentary history of Parapara Inlet is compared to nearby Whanganui Inlet, d’Urville Island and Nelson to establish the character of regional Holocene sea level movement. It is found that relative sea level reached modern elevations between 8 and 7 ka in the region. The similarity between sea level curves for the end of the post glacial marine transgression (PMT) to other tectonically stable sites in northern New Zealand suggests that this curve can now be considered a true eustatic signal for the New Zealand archipelago.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3