Radiocarbon sampling efforts for high-precision lake sediment chronologies

Author:

Rey Fabian123ORCID,Mustaphi Colin J. Courtney1ORCID,Szidat Sönke34ORCID,Gobet Erika23,Heiri Oliver1ORCID,Tinner Willy23

Affiliation:

1. Geoecology, Department of Environmental Sciences, University of Basel, Switzerland

2. Institute of Plant Sciences, University of Bern, Switzerland

3. Oeschger Centre for Climate Change Research, University of Bern, Switzerland

4. Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland

Abstract

High-resolution chronologies with the best time control are key for comparing palaeoenvironmental studies with independent high-precision historical, archaeological or climatic data. Precise chronologies are also essential for inter-site comparisons of palaeo records at decadal to centennial time scales. We present an updated sediment chronology from Burgäschisee, a small and well-studied lake in the Swiss lowlands. The new age-depth relationship was generated using a large number of new radiocarbon samples of terrestrial plant remains extracted from the Burgäschisee sediments and Bayesian age-depth modelling. The results reveal 2σ uncertainties of only ±19 years for the entire record covering the Early Bronze Age (3800 cal. BP) to the Early Middle Ages (1150 cal. BP). The differences between four age-depth modelling techniques (Bayesian and non-Bayesian) are minor (around 25 years) and remain stable with lower radiocarbon date availability. The maximum age offset between the preliminary previously published and the refined chronology from Burgäschisee is 225 years. Our results demonstrate the importance of a rigorous subsampling strategy that includes a careful selection of the best terrestrial plant material and avoiding radiocarbon calibration plateaus whenever possible. The new chronology from Burgäschisee now allows a more accurate site-to-site comparison with archaeological, historical and other palaeoecological evidence from the region.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3