Holocene shifts in riverine fine-grained sediment supply to the East China Sea Distal Mud in response to climate change

Author:

Hu Bangqi12,Yang Zuosheng1,Qiao Shuqing13,Zhao Meixun4,Fan Dejiang1,Wang Houjie1,Bi Naishuang1,Li Jun2

Affiliation:

1. Key Laboratory of Submarine Sciences and Prospecting Techniques, Ministry of Education, Ocean University of China, China

2. Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources, Qingdao Institute of Marine Geology, China

3. The First Institute of Oceanography, State Oceanic Administration, China

4. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China

Abstract

Holocene changes in fine-grained sediment supplies to the East China Sea outer shelf were uncovered, through the mineralogical and geochemical analysis of Core B3 in the East China Sea Distal Mud (ECSDM). Based on the lithology, accelerator mass spectrometry (AMS) 14C dating, and sea-level change, Core B3 can be divided into two major units: transgressive stage (Unit 1: 12.5–6.8 kyr) and highstand stage (Unit 2: 6.8–0 kyr). Significant discrepancy of dolomite/calcite ratio in the fine fractions (<16 µm) of Changjiang (dolomite/calcite = 3:1) and Huanghe (dolomite/calcite = 1:22) sediments was used as a new uniqueness provenance tracer to distinguish these two riverine sources. Both of the dolomite/calcite ratio and rare earth elements fractionation parameters in the fine-grained sediment indicated distinct provenance shifts of Core B3 during the Holocene. Unit 1 of Core 3 (12.5–6.8 kyr) mainly consists of the reworked and resuspension sediments of the East China Sea shelf during the Holocene transgression, while Unit 2 sediments (6.8–0 kyr) are most likely sourced from the Changjiang and Huanghe. Moreover, mixing curves of dolomite/calcite ratio reveal that the ECSDM continuously received the Changjiang sediment since 6.1 kyr with notable fluctuations, whereas the Huanghe sediment supply began in 6.8 kyr but abruptly stopped during 4.2–0.8 kyr and then appeared again since 0.8 kyr. Temporal changes of the Changjiang and Huanghe fine-grained sediment contribution to the ECSDM are closely related to the formation of modern oceanic circulation system since 6.8 kyr (shelf sea-level change), the ‘4.2 kyr’ climate event, and the followed transition to cold and dry climate condition in the northeastern China (global climate change), as well as the artificial shift of lower Huanghe course in ad 1128 in the war against invasion of the northern nomadic nation (human activities).

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3