Holocene palaeoceanographic evolution off West Greenland

Author:

Perner K1,Moros M1,Jennings A2,Lloyd JM3,Knudsen KL4

Affiliation:

1. Leibniz Institute for Baltic Sea Research Warnemuende, Germany

2. University of Colorado, USA

3. Durham University, UK

4. Aarhus University, Denmark

Abstract

Benthic foraminiferal assemblages from a core southwest of Disko Bugt provide a Holocene perspective (last ~7 ka BP) on ice-sheet/ocean interactions between the West Greenland Current (WGC) and the West Greenland ice sheet. Changes in the fauna reveal significant variations in the water mass properties (temperature and salinity) of the WGC through time. From 7.3 to 6.2 ka BP, a relatively warm/strong WGC influences ice-sheet melt in Disko Bugt and causes enhanced meltwater production, resulting in low surface-water productivity. The most favourable oceanographic conditions occur from 5.5 to 3.5 ka BP, associated with ‘thermal optimum-like’ conditions, encompassing minimum ice sheet extent in the Disko Bugt area. These conditions are attributed to: (1) reduced meltwater influence as the ice sheet is land based and (2) enhanced contribution of warm/saline water masses from the Irminger Current to the WGC. The transition into the late Holocene (last ~3.5 ka BP) is characterized by a cooling of oceanographic conditions, caused by increased advection of cold/low-salinity water masses from the East Greenland Current. A longer-term late-Holocene cooling trend within the WGC is attributed to the onset of Neoglacial cooling within the North Atlantic region. Superimposed on this cooling trend, multicentennial-scale variability within the WGC matches reconstructions from a nearby coring site in Disko Bugt as follows: (1) cooling at ~2.5 ka BP, linked to the 2.7 ka BP ‘cooling event’; (2) a warm phase centred at 1.8 ka BP, associated with the ‘Roman Warm Period’; (3) slight warming between 1.4 and 0.9 ka BP, linked to the ‘Medieval Climate Anomaly’; (4) severe cooling of the WGC after 0.9 ka BP, culminating at 0.3 ka BP during the ‘Little Ice Age’. We show that multicentennial-scale palaeoceanography variability along the West Greenland margin is driven by ocean forcing, i.e. variations in the relative contribution of Atlantic (Irminger Current) and Polar (East Greenland Current) water masses to the WGC during the last ~7 ka BP, influencing ice sheet dynamics.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3