Using tree-ring records to calibrate peak detection in fire reconstructions based on sedimentary charcoal records

Author:

Brossier Benoît1,Oris France2,Finsinger Walter12,Asselin Hugo2,Bergeron Yves2,Ali Adam A12

Affiliation:

1. Université Montpellier 2, France

2. Université du Québec en Abitibi-Témiscamingue, Canada

Abstract

We compared fire episodes over the past 150 years reconstructed using charcoal particles retrieved from well-dated sediment deposits from two small lakes in the eastern Canadian boreal forest, with dendrochronological reconstructions of fire events from the corresponding watersheds. Fire scars and age structure of living trees highlighted three fire events (ad 1890, 1941, and 1989). To explore the ability to detect these fire events based on sedimentary charcoal records, we explored the influence of two user-determined parameters of a widely used peak-detection algorithm (the CharAnalysis software): (1) the temporal resolution used to interpolate charcoal series and (2) the width of the smoothing window used to model background noise. The signal-to-noise index (SNI) is often used to evaluate the ability to detect peaks in sedimentary charcoal records, which can be related to fire events. SNI values >3 identify records appropriate for peak detection. Selecting standard settings in paleoecological studies (median temporal resolution of the entire sequence and 500- to 1000-year window width) yielded higher global SNI values but failed to detect most recent fire events. Instead, selecting a shorter reference period (the past ~150 years) to determine the temporal resolution to interpolate the charcoal series and a narrower smoothing window (100 years) best matched the tree-ring data despite lower SNI values (often <3.0). However, Holocene fire history differed markedly when reconstructed using different smoothing window widths (100–150 years vs >300 years). Consequently, we suggest using the smallest window width yielding a SNI >3. Practitioners must not necessarily focus on obtaining the highest possible SNI, usually related to wide smoothing windows. We also suggest that fire history reconstructions should focus on core sections presenting fairly constant sedimentation rates. Alternatively, sediments could be subsampled after age–depth models have been obtained.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3