Predicting the helpfulness of online customer reviews: The role of title features

Author:

Akbarabadi Mina1,Hosseini Monireh1

Affiliation:

1. K. N. Toosi University of Technology, Iran

Abstract

Nowadays, many people refer to online customer reviews that are available on most shopping websites to make a better purchase decision. An automated review helpfulness prediction model can help the websites to rank reviews based on their level of helpfulness. This study examines the effect of review title features on predicting the helpfulness of online reviews. Moreover, a new method is proposed to categorize action verbs in a review text. Text, reviewer, readability, and title features are the four main categories that are used in this article. We examine our proposed prediction model on two real-life Amazon datasets using machine learning techniques. The results show a promising performance of the model. However, feature importance analysis reveals the low importance of title features in the predictive model. It means that the title characteristics cannot be a powerful determinant of online review helpfulness. The results of this study can be beneficial to both buyers and website owners to have a deep insight into online reviews helpfulness.

Publisher

SAGE Publications

Subject

Marketing,Economics and Econometrics,Business and International Management

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3