Predicting online shopping cart abandonment with machine learning approaches

Author:

Rausch Theresa Maria1ORCID,Derra Nicholas Daniel1ORCID,Wolf Lukas1

Affiliation:

1. University of Bayreuth, Germany

Abstract

Excessive online shopping cart abandonment rates constitute a major challenge for e-commerce companies and can inhibit their success within their competitive environment. Simultaneously, the emergence of the Internet’s commercial usage results in steadily growing volumes of data about consumers’ online behavior. Thus, data-driven methods are needed to extract valuable knowledge from such big data to automatically identify online shopping cart abandoners. Hence, this contribution analyzes clickstream data of a leading German online retailer comprising 821,048 observations to predict such abandoners by proposing different machine learning approaches. Thereby, we provide methodological insights to gather a comprehensive understanding of the practicability of classification methods in the context of online shopping cart abandonment prediction: our findings indicate that gradient boosting with regularization outperforms the remaining models yielding an F1-Score of 0.8569 and an AUC value of 0.8182. Nevertheless, as gradient boosting tends to be computationally infeasible, a decision tree or boosted logistic regression may be suitable alternatives, balancing the trade-off between model complexity and prediction accuracy.

Publisher

SAGE Publications

Subject

Marketing,Economics and Econometrics,Business and International Management

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3