Modular junction may be more problematic than bearing wear in metal-on-metal total hip arthroplasty

Author:

Vendittoli Pascal-André1,Massé Vincent1,Kiss Marc-Olivier1,Lusignan Daniel1,Lavigne Martin1

Affiliation:

1. Department of Surgery, University of Montreal, Hospital Maisonneuve-Rosemont, Montreal, Canada

Abstract

Introduction: In total hip arthroplasty (THA), local adverse reaction to metal debris (ARMD) may be caused by abnormal metal ion release from a metal-on-metal (MoM) bearing, or by wear and corrosion of the implant’s modular junction. The aim of this study was to compare ion levels and rate of ARMD between patients sharing the same MoM bearing but 1 group having monoblock stems versus another having modular stems. Materials and methods: Whole blood cobalt (Co) and chromium (Cr) ion concentrations, ARMD rate, revision rate, and function measured by UCLA and WOMAC scores were compared between groups. Results: ARMD rate was significantly higher in the modular group (46%) compared with the monoblock group (16%, p = 0.031). Revision for ARMD was performed at 52.8 ± 8.1 months in the modular group versus 98.2 ± 15.5 months after primary THA in the monoblock group. ARMD originated from wear and corrosion of the junction between stem and femoral head adapter sleeve in all monoblock cases, and the junction between stem and modular neck in all the modular ones. Cr and Co ions levels were significantly higher in the modular stem group ( p < 0.001 for both). Conclusions: Although both groups had MoM bearings, corrosion at stem/neck or neck/head junctions combining dissimilar metal (Ti and Cr-Co) was seen as the source of excess metal ions release leading to ARMD. Poor performance of the modular junction may be more deleterious than wear of the bearing. To avoid such complications, THA femoral stem modular junctions should be eliminated (return to a full monoblock implant) or have improved junction design.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3